International Journal of Electrical Engineering and Technology (IJEET) Volume 13, Issue 5, May 2022, pp. 112-120, Article ID: IJEET_13_05_014 Available online at https://iaeme.com/Home/issue/IJEET?Volume=13&Issue=5 ISSN Print: 0976-6545 and ISSN Online: 0976-6553 DOI: https://doi.org/10.17605/OSF.IO/J7D

© IAEME Publication Scor

Scopus Indexed

THE ELECTRONIC WASTE MANAGEMENT USING GEOMETRIC CURVE MODEL FOR FORECASTING THE AMOUNT OF ELECTRONIC WASTE, POPULATION AND GROSS DOMESTIC PRODUCT IN THAILAND

Athichai Charoenthamanont^{1*}, Seree Tuprakay², Waranon Kongsong³, Kowit Suwannahon⁴ SirawanRuangchuay Tuprakay⁵, Boontham Harnphanich⁶

^{1*} Doctoral Candidate, Department of Engineering Law and Inspection, Ramkhamhaeng University, Bangkok, Thailand.

²Associate Professor, Faculty of Engineering, Ramkhamhaeng University, Bangkok, Thailand.

³Assistant Professor, Faculty of Engineering, Ramkhamhaeng University, Bangkok, Thailand. ⁴Assistant Professor, Faculty of Public Health Burapha University, Chon Buri, Thailand.

⁵Assistant Professor, Faculty of Science and Technology Suan Dusit Rajabhat University, Bangkok, Thailand.

⁶Doctor, Faculty of Engineering Ramkhamhaeng University, Bangkok, Thailand. *Corresponding Author

ABSTRACT

The purpose of this research is to study the application of Geometric Curve technique in forecasting the quantity of electronic waste (e-waste), population and Gross Domestic Product (GDP) in Thailand.

We employed the following three equations: 1. for quantity of e-waste forecast model is $Q_n = Q_o(1+r_{average})^{n_F}$; 2. for population forecast model is $P_n = P_o(1+r_{average})^{n_F}$; and 3. for GDP forecast model is $G_n = G_o(1+r_{average})^{n_F}$.

Evaluating using a Geometric Curve model, we achieved the following results: the evaluated quantity of e-waste model accuracy = 0.978133801; evaluated population model accuracy = 0.906364840; and evaluated GDP model accuracy = 0.808724. All models are highly accurate.

Key words: Forecasting, Geometric curve, E-waste, Population, GDP.

The Electronic Waste Management Using Geometric Curve Model for Forecasting the Amount of Electronic Waste, Population and Gross Domestic Product in Thailand

Cite this Article: Athichai Charoenthamanont, Seree Tuprakay, Waranon Kongsong, Kowit Suwannahon, Sirawan Ruangchuay Tuprakay, Boontham Harnphanich, The Electronic Waste Management Using Geometric Curve Model for Forecasting the Amount of Electronic Waste, Population and Gross Domestic Product in Thailand, *International Journal of Electrical Engineering and Technology (IJEET)*. 13(5), 2022, pp. 112-120.

https://iaeme.com/Home/issue/IJEET?Volume=13&Issue=5

1. INTRODUCTION

Thailand will have an e-waste overflow in the future. According to the UN's Global E-Waste Monitor 2020, global e-waste volumes reached 53.6 million metric tons in 2019, which increased by 21% in just five years. In addition, only 17.4% of it was properly forwarded to the recycling stations. Thailand produces more than 400,000 tons of e-waste per year and recycles only about 7.1% of that. As Thailand's population and GDP increase, it is expected that the quantity of e-waste will also be increased. It will be more difficult to manage e-waste and e-waste volume forecasting is crucial in planning the e-waste management operation including storage, consolidation, material recovery as well as the tools, machines, equipment, personnel, systems and other necessary components.

The higher the quantity of e-waste, population and GDP, the higher the environmental pollution such as air pollution, water pollution, and soil pollution, all of which affect the wellbeing of the population.

One major health concern is the toxic additives and hazardous substances such as mercury, which damage the human brain and coordination system.

Therefore, forecasting the amount of e-waste for next 15 years is very important in order to determine the country's policies and strategies for planning, implementing various projects, including reusing materials and sustainable resources. The forecast is a fundamental information that can be used in the planning, design and management of environmental engineering and inspection for sustainable development of Thailand.

2. REVIEW LITERATURE

2.1. Mathematic Models

There are many mathematic models (Adisak and team, 1998) to forecast the amount in the future such as Time-Series Method : Y = f(t) as below :

113

(1) Polynomial curves

Liner curve	y = at + b	(1-1)
Quadratic curve	$y = at^2 + bt + c$	(1-2)
(2) Exponential curves		
Liner exponential cu	rve $y = ab^t$	(2-1)
Quadratic exponentia	al curve $y = ab^t C^{t2}$	(2-2)
Corrective exponenti	al curve $y = a - bc^t$	(2-3)
(3)Growth curves		
Logistic curve	$y = c/(1+be^{at})$	(3-1)
Gonbeltz curve	$y = c-ab^{bt}$	(3-2)
High-order curve	$\mathbf{y} = \mathbf{at}^{\mathbf{b}}$	(3-3)

(4) Geometric curve

Geometric curve $P_n = P_o(1+r_{average})^{n_F}$ (4-1)

Geometric curve is widely used in calculations in the future, especially in population forecast.

 P_n = Population in the nth year in the future from the presentn(person)

Po = Current population or the year of the beginning of the calculation (person)

 n_F = The time interval to calculate the change from the present or start time of calculation (year) $r_{average}$ = average population change rate (person/year)

This research will apply the Geometric curve for forecasting the quantity of e-waste, population and GDP in Thailand.

2.2. Geometric Curve Model Performance Measurement

Measuring the performance of a linear regression model using the squared correlation coefficient of determination or the value of R-square (R^2). It is a value used to prove whether the resulting model is suitable, with a value of 0-1, the closer to 1 the better. It is considered that the resulting model is a good forecasting model. R^2 or R-Squared is the most common metric when running model as a statistician. In the formula below, y-hat is a prediction and y-bar is the mean of y. Another name used by statisticians R^2 is Explained Variance to estimate the closeness of the analyzed results to the actual data.

$$R^{2} = 1 - \left(\frac{\Sigma(y - \hat{y})^{2}}{\Sigma(y - \bar{y})^{2}}\right)$$
(5-1)

3. METHODS OF RESEARCH

3.1. To study the input factors of the model using mathematic models by studying the following data set out in Table 1 below: 1. quantity of e-waste according to Thailand's Pollution Control Department, population from Thailand's Ministry of Interior and GDP data from the Bank of Thailand:

Table 1 Data of a	amount of electron	ic waste, populati	on, and GDP of Th	nailand since2008 to 2020.

Voor	Quantity of E-waste	Population	GDP
Tear	(tons)	(Persons)	(Billion Baht)
2008	322,380	63,389,730	7,710
2009	332,839	63,525,062	7,657
2010	341,989	63,878,267	8,232
2011	350,939	64,076,033	8,302
2012	359,070	64,456,695	8,903
2013	368,314	64,785,909	9,142
2014	376,801	65,724,716	9,232
2015	384,233	65,729,098	9,521
2016	380,605	65,931,550	9,849
2017	393,070	66,188,503	10,260
2018	414,600	66,413,979	10,690
2019	420,000	66,558,935	10,932
2020	428,113	66,186,727	10,265

The Electronic Waste Management Using Geometric Curve Model for Forecasting the Amount of Electronic Waste, Population and Gross Domestic Product in Thailand

3.2. Build a forecasting Geometric Curve model by using Excel program.

Figure 1 Research Implementation Process for Forecasting model.

4. RESULTS AND DISCUSSION

4.1. E-waste Forecast in Geometric Curve Model

E-waste forecast

Year	Quantity of E-waste	$Q_n = Q_o (1 + r_{average})^n_F$		
	(tons)	(tons)		
2008	322,380	322,380		
2009	332,839	330,117		
2010	341,989	338,040		
2011	350,939	346,153		
2012	359,070	354,461		
2013	368,314	362,968		
2014	376,801	371,679		
2015	384,233	380,599		
2016	380,605	389,734		
2017	393,070	399,087		
2018	414,600	408,665		
2019	420,000	418,473		
2020	428,113	428,517		
2021		438,801		
2022		449,332		
2023		460,116		
2024		471,159		
2025		482,467		
2026		494,046		
2027		505,903		
2028		518,045		
2029		530,478		
2030		543,209		
2031		556,246		
2032		569,596		
2033		583,266		
2034		597,265		
2035		611,599		

Table 2 Data Quantity of electronic waste and forecast.

115

Figure 2 Graph between Quantity of e-waste and forecast.

4.2. Population Forecast in Geometric Curve Model

Population forecast : $P_n = P_o(1 + r_{average})^{n_F}$

Year	Population	$P_n = P_o (1 + r_{average})^n F$		
	(Persons)	(Persons)		
2008	63,389,730	63,389,730		
2009	63,525,062	63,618,567		
2010	63,878,267	63,848,230		
2011	64,076,033	64,078,722		
2012	64,456,695	64,310,046		
2013	64,785,909	64,542,206		
2014	65,724,716	64,775,203		
2015	65,729,098	65,009,041		
2016	65,931,550	65,243,724		
2017	66,188,503	65,479,254		
2018	66,413,979	65,715,634		
2019	66,558,935	65,952,867		
2020	66,186,727	66,190,957		
2021		66,429,907		
2022		66,669,719		
2023		66,910,396		
2024		67,151,943		
2025		67,394,361		
2026		67,637,655		
2027		67,881,827		
2028		68,126,880		
2029		68,372,818		
2030		68,619,644		
2031		68,867,361		
2032		69,115,972		
2033		69,365,481		
2034		69,615,890		
2035		69,867,204		

 Table 3 Data of Population and forecast

The Electronic Waste Management Using Geometric Curve Model for Forecasting the Amount of Electronic Waste, Population and Gross Domestic Product in Thailand

4.3. GDP forcast in Geometric Curve Model

Gross Domestric Product : GDP is one of the indicator to measure the country development.

Year	GDP	$G_n = G_o(1+r_{average})^n_F$ (Billion Baht)		
	(Billion Baht)			
2008	7.710	7.710		
2009	7.657	7.901		
2010	8.232	8.096		
2011	8.302	8.296		
2012	8.903	8.502		
2013	9.142	8.712		
2014	9.232	8.927		
2015	9.521	9.148		
2016	9.849	9.374		
2017	10.260	9.606		
2018	10.690	9.844		
2019	10.932	10.087		
2020	10.265	10.337		
2021		10.593		
2022		10.855		
2023		11.123		
2024		11.398		
2025		11.680		
2026		11.969		
2027		12.265		
2028		12.569		
2029		12.879		
2030		13.198		
2031		13.524		
2032		13.859		
2033		14.202		
2034		14.553		
2035		14.913		

Table 4 Data of GDP and forecast.

Figure 4 Graph between GDP and forecast.

4.4. Evaluated Quantity of E-waste Forecast in Geometric Curve Model by using $I\!\!R^2$

				C ¹¹			
n	Y	Y HAT	Y-Y HAT	(Y-Y HAT) ²	Y BAR	Y-Y BAR	(Y-Y BAR) ²
	ACTUAL	PREDICTION					
1	322,380	322,380	0	0	374,843	52,463	2,752,317,946
2	332,839	330,117	2,722	7,408,631	374,843	42,004	1,764,297,247
3	341,989	338,040	3,949	15,595,147	374,843	32,854	1,079,354,992
4	350,939	346,153	4,786	22,906,856	374,843	23,904	571,379,153
5	359,070	354,461	4,609	21,246,950	374,843	15,773	248,772,971
6	368,314	362,968	5,346	28,583,865	374,843	6,529	42,621,815
7	376,801	371,679	5,122	26,236,578	374,843	1,958	3,835,571
8	384,233	380,599	3,634	13,205,035	374,843	9,390	88,180,767
9	380,605	389,734	9,129	83,329,617	374,843	5,762	33,205,963
10	393,070	399,087	6,017	36,205,611	374,843	18,227	332,240,353
11	414,600	408,665	5,935	35,221,845	374,843	39,757	1,580,655,745
12	420,000	418,473	1,527	2,331,224	374,843	45,157	2,039,196,329
13	428,113	428,517	404	162,829	374,843	53,270	2,837,742,068
SUM Y	4,872,953		SUM 1	292,434,189		SUM 2	13,373,800,919
VDAD	274.042						0.001066106
Y BAR	3/4,843					SUM1/SUM2	0.021866199
						R ²	0.978133801

Table 5 Evaluate model : $Q_n = Q_o(1+r_{average})^{n_F}$

Evaluated **Quantity of E-waste** model accuracy = 0.978133801 the model is highly accurate.

4.5. Evaluated Population forecast in Geometric Curve Model by using R²

Table 6	Evaluate	model	:	$P_n = P_o(1)$	+r _{average})	n_{F}
---------	----------	-------	---	----------------	-------------------------	---------

n	Y	Y HAT	Y-Y HAT	(Y-Y HAT) ²	Y BAR	Y-Y BAR	(Y-Y BAR) ²
	ACTUAL	PREDICTION					. ,
1	63,389,730	63,389,730	0	0	65,141,939	-1,752,209	3,070,236,379,681
2	63,525,062	63,618,567	-93,505	8,743,171,055	65,141,939	-1,616,877	2,614,291,233,129
3	63,878,267	63,848,230	30,037	902,224,259	65,141,939	-1,263,672	1,596,866,923,584
4	64,076,033	64,078,722	-2,689	7,231,055	65,141,939	-1,065,906	1,136,155,600,836
5	64,456,695	64,310,046	146,649	21,505,856,266	65,141,939	-685,244	469,559,339,536
6	64,785,909	64,542,206	243,703	59,391,388,295	65,141,939	-356,030	126,757,360,900
7	65,724,716	64,775,203	949,513	901,575,169,724	65,141,939	582,777	339,629,031,729
8	65,729,098	65,009,041	720,057	518,481,564,912	65,141,939	587,159	344,755,691,281
9	65,931,550	65,243,724	9,129	83,329,617	65,141,939	789,611	623,485,531,321
10	66,188,503	65,479,254	6,017	36,205,611	65,141,939	1,046,564	1,095,296,206,096
11	66,413,979	65,715,634	5,935	35,221,845	65,141,939	1,272,040	1,618,085,761,600
12	66,558,935	65,952,867	1,527	2,331,224	65,141,939	1,416,996	2,007,877,664,016
13	66,186,727	66,190,957	404	162,829	65,141,939	1,044,788	1,091,581,964,944
SUM Y	846,845,204		SUM 1	1,510,763,856,693		SUM 2	16,134,578,688,653
y bar	65,141,939					SUM1/SUM2	0.093635160
						R ²	0.906364840

Evaluated model accuracy = 0.906364840 the model is highly accurate.

118

4.6. Evaluated GDP forcast in Geometric curve Model by using R²

n	Y	Y HAT	Y-Y HAT	(Y-Y HAT) ²	Y BAR	Y-Y BAR	(Y-Y BAR) ²
	ACTUAL	PREDICTION					
1	7,710	7,710	0	0	9,284	-1,574	2,478,203
2	7,657	7,901	-244	59,536	9,284	-1,627	2,647,880
3	8,232	8,096	136	18,496	9,284	-1,052	1,107,190
4	8,302	8,296	6	36	9,284	-982	964,777
5	8,903	8,502	401	160,801	9,284	-381	145,337
6	9,142	8,712	430	184,900	9,284	-142	20,230
7	9,232	8,927	305	93,025	9,284	-52	2,728
8	9,521	9,148	373	139,129	9,284	237	56,060
9	9,849	9,374	475	225,625	9,284	565	318,964
10	10,260	9,606	654	427,716	9,284	976	952,126
11	10,690	9,844	846	715,716	9,284	1,406	1,976,187
12	10,932	10,087	845	714,025	9,284	1,648	2,715,143
13	10,265	10,337	-72	5,184	9,284	981	961,908
SUM Y	120,695		SUM 1	2,744,189		SUM 2	14,346,732
Y BAR	9284.2308					SUM1/SUM2	0.19127624
						R ²	0.808724

Table 7 Evaluate model : $G_n = G_o(1+r_{average})^{n_F}$

Evaluated model accuracy = 0.808724 which means to test the accuracy of a model or equation with R square where if R square is close to 1. It is considered to have high accuracy. From the test model,

The model is highly accurate.

5. CONCLUSION

Predictive model using Geometric Curve technique, which has the following three equation models:

 $Q_n = Q_o(1+r_{average})^{n_F}$ for Quantity of e-waste (tons)

 $P_n = P_o(1+r_{average})^{n_F}$ for Population (persons)

 $G_n = G_o(1 + r_{average})^{n_F}$ for GPD (Billion Baht)

Reliability values with a squared correlation coefficient (Coefficient of determination, R^2): Evaluated Quantity of E-waste model accuracy = 0.978133801, Evaluated Population model accuracy = 0.906364840, Evaluated GDP model accuracy = 0.808724.

In terms of precision, the mathematic models used to forecast the quantity of e-waste, population and GDP of Thailand have high accuracy.

RECOMMENDATIONS

In this research, while there are other statistical techniques that can be applied, geometric curves have been selected to be used in forecasting of quantity of e-waste, population and GDP of Thailand. It is a fundamental technique for representing the relationship of variables and the strength of technique is its ability to simulate complex systems of data. This is an important feature in forecasting, which relies on these various data and which can be applied in both mathematics and computer science.

REFERENCES

- [1] Eugenio Calabi , Peter J. Olver and Allen Tannenbaum, 1996. Affine Geometry, Curve Flows, and Invariant Numerical Approximations.
- [2] Erick Makundi , 2020. The Influence Of Emergency Procurement On Value For Money In Non-Profit Organizations In Tanzania : A Case Of SNV Netherlands Development Organization.

119

- [3] Farzad Khosrowshahi, 2001. Project Cash Flow Forecasting: A Mathematical Approach , South Bank University, Faculty of the Built Environment, Wandsworth Road, London SW8 2JZ, UK.
- [4] Jonghak Lee, Taekwan Yoon, Sangil Kwon and Jongtae Lee, 2019. Model Evaluation for Forecasting Traffic Accident Severity in Rainy Seasons Using Machine Learning Algorithms: Seoul City Study.
- [5] Majuto Iddi, 2020. The Influence of Annual Procurement Plan in Achieving Value for Money In Public Projects In Tanzania: A Case Of National Social Security Fund.
- [6] Okorie, Kalu Okam, Jamiu, Garba2 and team, 2018. Application of the Euler Sequence in Continuous Compounding.
- [7] Vatsal Patel, Srinivasarao Meka, and Nadiad, Gujarat, 2013. Forecasting of Municipal Solid Waste Generation for Medium Scale Towns Located in the State of Gujarat, India.
- [8] Yuxing Yan ,2012. An Internet Connected Financial Calculator, Hofstra University.